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Abstract
We present a Fokker–Planck description of supercooled colloidal systems
exhibiting slow relaxation dynamics. Assuming the existence of a local
quasi-equilibrium state during the relaxation of the system, we derive a
non-Markovian Fokker–Planck equation for the non-stationary conditional
probability. A generalized Stokes–Einstein relation containing the temperature
of the system at local quasi-equilibrium instead of the temperature of the bath is
obtained. Our results explain experiments showing that the diffusion coefficient
is not proportional to the inverse of the effective viscosity at frequencies related
to the diffusion timescale.

1. Introduction

The dynamics of slow relaxation systems exhibits peculiar characteristics which make it
essentially different from the dynamics of systems relaxing in much shorter timescales [1–6].
The ageing behaviour of the correlation functions [7] and the violation of the fluctuation-
dissipation theorem [8] and of the Stokes–Einstein relation [9] are among the significant
features which have attracted the interest of many researchers in the last few years. Relaxation
phenomena in glasses, polymers, colloids and granular matter provide innumerable situations
demanding new theoretical developments whose implementation constitutes a challenge for
non-equilibrium statistical mechanics theories.

The origin of that peculiar behaviour lies in the fact that during its evolution, the system
rests permanently away from equilibrium. This feature would explain why results obtained
when the system is close to equilibrium are not necessary valid when that condition is not
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fulfilled. A simple example illustrating this point is supplied from the slow dynamics of a two-
level system. During the transition, the system does not thermally equilibrate with the bath and
as a consequence the equipartition law is not valid. It was shown in [10] that coarsening the
level of description of the path that the system follows in the configuration space going from
diffusion to activation regimes leads to violation of the fluctuation-dissipation theorem. The
fast decay of the diffusion modes makes the system always close to equilibrium whereas the
activation process occurring at longer timescales does not guarantee validity of the theorem.

In this paper we will present an example illustrating the peculiar dynamics of slow
relaxation systems. Using a Fokker–Planck description we derive a generalized Stokes–
Einstein relation for supercooled colloidal liquids showing that the diffusion coefficient and
inverse of viscosity are not proportional to each other at low frequencies, when the system
becomes activated. At higher frequencies, the particles undergo diffusion in the solvent and
that relation holds.

The paper will be arranged as follows. In section 2, we will briefly review the
generalization of the Onsager fluctuation theory to non-equilibrium ageing states. Section 3
will be devoted to the formulation of a mean field theory describing the dynamics of highly
concentrated suspensions. This theory will be used in section 4 to interpret experimental results
supporting the violation of the Stokes–Einstein relation in supercooled colloidal liquids. In
the conclusions section we will summarize our main results.

2. Slow relaxation dynamics and local quasi-equilibrium

When the relaxation of a system is slow enough, its evolution takes place through a sequence
of states characterized by a set of time dependent intensive parameters whose values are, in
general, different from those of the bath. It is then said that the system is at quasi-equilibrium.

A statistical mechanics description of those systems involves the non-stationary
conditional probability density P(α0, t0|α, t), with α = (α1, . . . , αn) representing the state
vector of the system, and α0 the initial state at time t0. The local quasi-equilibrium states are
characterized by the probability density Pqe(α, t) satisfying

lim
t→∞ P(α0, t0|α, t) = Pqe(α, t), (1)

which defines the probability of the system when the information on the initial conditions
is lost because these have already relaxed. When relaxation takes place in a short timescale,
Pqe(α, t) reduces to the local equilibrium probability density in which the intensive parameters
are those of the bath.

The evolution of the conditional probability density is governed by a Fokker–Planck
equation. To obtain it, we will first formulate the continuity equation

∂

∂ t
P(α0, t0|α, t) = − ∂

∂α
·
[

P(α0, t0|α, t)vα(α0, α; t0, t)
]
, (2)

in which Pvα represents the phase space probability current with vα the stream velocity
in α-space. That velocity can be obtained from a mesoscopic version of non-equilibrium
thermodynamics for slow relaxation systems that we have proposed [11].

The existence of a local quasi-equilibrium state in α-space enables one to formulate the
Gibbs equation

T (t)δsqe(t) = δeqe(t) −
∫

µqe(t)δP(t) dα, (3)

where sqe(t) is the entropy and eqe(t) the mean internal energy per unit mass at quasi-
equilibrium. We will assume that the temperature T (t) of the system at local quasi-equilibrium
is only a function of time whereas the chemical potential µqe(t) can be a function of α.
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The entropy of the system can be expressed in terms of the probability density by means
of the Gibbs entropy postulate [13] in the form

s(t) = − k

m

∫
P(t0|t) ln

P(t0|t)
Pqe(t)

dα + sqe(t), (4)

where k is the Boltzmann constant and m the molecular mass.
The form of the current Pvα can be inferred from the entropy production by relating it,

as is done in non-equilibrium thermodynamics [12], with the corresponding thermodynamic
force. The entropy production is obtained by combining the rate of change of sqe(t) obtained
from equation (3) with the time derivative of equation (4). After using equation (2) and
integrating by parts assuming that P(t0|t)vα(t0, t) vanishes at the boundary, one may identify

the non-equilibriumchemical potentialµ(t0; t) = µqe(t)+ kT (t)
m ln P(t0|t)

Pqe(t)
and the corresponding

thermodynamic force ∂µ(t)
∂α

, which is conjugated to the probability current Pvα . Following the
scheme of non-equilibrium thermodynamics one simply obtains

vα(t0; t) = −B(t0; t) ·
[

X(α, t) +
kT (t)

m

∂

∂α
ln P(t0|t)

]
, (5)

where we have defined the generalized force [12]

X(α, t) ≡ − ∂

∂α

[
kT (t)

m
ln Pqe(t)

]
. (6)

The time dependent transport coefficients B(t0; t) (related to the Onsager coefficients)
incorporate memory effects through its dependence on time [14, 15], and the local quasi-
equilibrium probability density is given by

Pqe(t) = Pe exp

(
m

kT (t)
[µqe − eqe]

)
, (7)

where Pe is the equilibrium distribution function. Equation (7) can be obtained by using
the statistical definition of the entropy in the Gibbs equation (3), [11]. Now, on substituting
equation (5) into (2) the resulting Fokker–Planck equation is

∂ P(t0|t)
∂ t

= ∂

∂α
· B(t0; t) ·

[
X(α, t)P(t0|t) +

kT (t)

m

∂ P(t0|t)
∂α

]
. (8)

Using the Fokker–Planck equation (8), we can calculate the evolution equation for the
equal-time correlation function of α-variables which for sufficiently long times leads to the
following expression for the temperature of the system:

T (t) ≡ m

k
〈X(t) · α(t)〉qe, (9)

with 〈· · ·〉qe denoting the average at local quasi-equilibrium. This result reduces to the one
corresponding to fast relaxation processes [16] in which the averaging is performed at local
equilibrium.

In [11], we have shown that the temperatures of the system and of the bath TB(t) are related
by T (t) = ATB(t), expressing the lack of thermal equilibration. Equilibrium is reached when
A = 1 in which case, for linear thermodynamic forces, one recovers the expression for the
equipartition law. The presence of T (t) in the last term of equation (8) gives rise to a modified
version of the fluctuation-dissipation theorem.
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3. Fokker–Planck description of concentrated colloidal suspensions

In this section, we will study diffusion in concentrated colloidal suspensions by means of an
effective medium approach elaborated on the grounds of the theory we have introduced in the
previous section. We will analyse the motion of a test colloidal particle through the suspension
by using the Fokker–Planck equation describing the evolution of the two-time probability
density P(α0, t0|α, t). In this case, the phase space vector is simply α = (�u, �r), where �u and
�r represent the velocity and position of the test particle.

To derive the Fokker–Planck equation, we will first formulate the Gibbs equation

Tρδs = ρδe − ρ−1 pδρ − m
∫

µδP d�u, (10)

which incorporates the effects of interactions among particles through the term containing the
excess of osmotic pressure p. Here e is the internal energy, m the mass of the particle and
ρ = m

∫
P d�u the mass density. In this case, the quasi-equilibrium probability density is given

by [11]

Pqe = exp

(
m

kT

[
µqe − 1

2
u2 − ρ−1 p

])
. (11)

Here, the interaction of the test particle with the other colloidal particles is represented by
means of the term ρ−1 p which can be expressed in terms of a virial expansion in ρ, whereas
µqe constitutes the ideal chemical potential. Introducing the fugacity z = Pa, with the activity
coefficient given by a ≡ exp( m

kT ρ−1 p), equation (4) can be expressed as

s = −kB

ρ

∫
P ln

z

zqe
d�u + sqe, (12)

where zqe = exp( m
kT [µqe − 1

2 u2]) is the fugacity at quasi-equilibrium. Notice that in the limit
of infinite dilution ρ−1 p ∼= 0, thus implying a = 1, which corresponds to the ideal case.

The existence of interactions among the test and the other colloidal particles gives rise to
a force term in the continuity equation for P . In particular, according to equation (11), the
force entering into this term is given by −∇(ρ−1 p) (see for example [17]). Now, on taking
into account the definition of the activity coefficient a, the continuity equation for P becomes

∂ P

∂ t
+ ∇ · P �u − ∇

[
kT (t)

m
ln a

]
· ∂ P

∂ �u = − ∂

∂ �u · P �v�u , (13)

where P �v�u is the probability current, with �v�u the stream velocity in �u-space.
In accordance with the general formalism of non-equilibrium thermodynamics, the

expression for the probability current P �v�u can be obtained from the entropy production which
only contains dissipative terms and is simply given by

σ = −m

T

∫
P �v�u · ∂µ

∂ �u d�u. (14)

Equation (14) has been obtained by taking the time derivative of equation (12), using
equations (13), (11) and (10), and the balance equation for the energy e(t), neglecting viscous
dissipation [12]. In order to obtain equation (14), we have also identified the non-equilibrium
chemical potential

µ(t0; t) = µqe(t) +
kT (t)

m
ln

z(t0; t)

zqe(t)
. (15)

On taking into account the definition (6), the resulting generalized Fokker–Planck equation
for the two-time probability density is

∂ P

∂ t
+ ∇ · �u P − ∇

[
kT (t)

m
ln a

]
· ∂ P

∂ �u = ∂

∂ �u · β(t)

[
�u P +

kT (t)

m

∂ P

∂ �u
]

, (16)
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where β characterizes the dissipation of the kinetic energy of the test particle. This coefficient
is, in general, a function of time, position and density; its dependence on time is a consequence
of the non-Markovian nature of the stochastic process [14, 15, 19].

We will now derive the evolution equation for the velocity field by taking the time derivative
of the momentum ρ�v = m

∫ �u P d�u and using equation (16). After integrating by parts one
obtains

ρ
d�v
dt

= −βρ�v − kT (t)

m

[
1 +

∂ ln a

∂ ln ρ

]
∇ρ, (17)

where we have used the fact that, in the absence of an externally imposed flow, the second

moment ��P = m
∫
(�u − �v)(�u − �v)P d�u can be approximated by ��P = kT

m ρ
��1, [18].

At times such that t 	 β−1, the particle enters the diffusion regime in which one may
neglect the time derivative in equation (17), obtaining then the constitutive relation for the mass
diffusion current ρ�v which, substituted into the mass continuity equation ∂ρ

∂ t = −∇ · (ρ�v),
yields the Smoluchowski equation

∂ρ

∂ t
= ∇ · (D · ∇ρ) . (18)

From equation (17) we may identify the diffusion coefficient

D = kT (t)

mβ

[
1 +

∂ ln a

∂ ln ρ

]
. (19)

The form of equation (19) coincides with the expression given in [12]. Notice, however, that it
contains the temperature of the system at quasi-equilibrium instead of the temperature of the
bath.

3.1. The generalized Stokes–Einstein relation in supercooled colloidal systems

It has been shown in [9] that in supercooled colloidal liquids at low frequencies the Stokes–
Einstein relation is not fulfilled. Measurements of the viscosity and the diffusion coefficients
obtained in [20, 21] indicate the existence of a frequency domain in which those quantities
are not proportional (see figure 1). It is our purpose to offer here an explanation for those
experimental results.

The experimental results of [20] suggest that the mean square displacement of the colloidal
system can be assumed independent of the wavevector �k at the volume fractions considered,
ranging from the freezing point to the glass transition φg values. This implies that, in our
approximation, the system may be considered isotropic and homogeneous. Consequently, the
transport coefficients can be assumed to be independent of the wavevector �k. We will first
introduce the effective viscosity

η(ω) = kT

6π R
D−1, (20)

where R is the radius of the particle.
The dependence of the viscosity on the frequency can be inferred through the expression

for the penetration length λ of the diffusive modes. In the dilute case, λ is given through
λ−1 = 1

R (τω)
1
2 , with τ = R2

6D0
the characteristic diffusion time [22] and D0 = kTB

6π Rη0
the

diffusivity in the pure solvent, with η0 its viscosity. At higher concentrations, it can be assumed
that

λ−1 ≡ 1

R
(τω)γ , (21)

where the exponent γ and the scaling function  may, in general, depend on the volume
fraction. The quantity R can be interpreted as an effective radius.
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Figure 1. Comparison between the viscosity and diffusion coefficients for two values of the volume
fraction. Triangles and squares represent viscosity data from [9]. The gap between the viscosity
and diffusion at low frequencies is proportional to the scaling factor A of the temperature. At
higher frequencies A → 1.

The penetration length gives an estimation for the average size of a cage formed by the
surrounding particles [23]. At high frequencies, the test particle performs a free Brownian
motion inside the cage and the viscosity is that of the pure solvent. At low frequencies,
collisions of the test particle with the other particles modify the viscosity. Thus, we will
assume the following expression for the effective viscosity:

η(ω) = η0
(
1 + Rλ−1

)
, (22)

valid up to first order in Rλ−1, reflecting the fact that cage diffusion is important when
R ∼ λ [24].

By taking into account the general relation between system and bath temperatures obtained
from our formalism, T = ATB, [11], equation (20) can be written as

Dη = kTB

6π R
A, (23)

which constitutes a generalization of the Stokes–Einstein relation to systems exhibiting slow
relaxation dynamics.

From equation (9) and from its definition, the quantity A is essentially proportional to
the velocity moments of the particle. In particular, when X(t) is a linear function, A is
proportional to the velocity correlation function. It is then plausible to assume the following
expansion [25, 26]:

A ∼= [
1 + b (τω)ε

]
, (24)

where b and the exponent ε may, in general, be functions of the volume fractionφ. Comparison
of equation (24) with the corresponding relation obtained in [9] by fitting the experimental
data yields ln b ∼= ε(40 φ

φg
− 37) + 2.659, and ε = −0.77.
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Figure 2. The diffusion coefficient as a function of the frequency for different values of the volume
fraction. Solid curves were obtained by fitting the exponent ε = −0.77, in accordance with [9].
Dotted curves were obtained by taking ε = −0.67.

To contrast the theoretical expression for the effective viscosity (22) with the experimental
results reported in [9], we will take the logarithm of equation (22) and expand the result in
terms of the variable log τω, around τω = 1. Up to first order we obtain

log η ∼= log

[
η0

(
1 +

1



)]
+

γ

1 + 
log τω. (25)

A direct comparison of equation (25) with the fitting of experimental data given by the
expression log η ∼= c0 + s(φ) log τω, with s(φ) ≈ 6.39 − 13φ and c0 a constant, gives the
dependence of γ and  on the volume fraction.

The expression for the diffusion coefficient at the frequencies we are considering can
now be derived by using equation (23). In figure 2, we represent the diffusion coefficient
given through equation (23) as a function of the reduced frequency. At higher concentrations
(φ = 0.56, 0.55), a closer agreement with the experimental values of D given in [9] has
been obtained with ε = −0.77 (solid curves). At lower concentrations (φ = 0.53, 0.52), a
closer agreement with experiments has been obtained with ε = −0.67 (dotted curves). This
dependence of the fitting on the value of the exponent ε suggests that it is also a function of
the volume fraction.

4. Conclusions

In this paper, we have proposed a general formalism for analysing the dynamics of systems
which relax on long timescales of the order of the observation time or even longer. The fact that
the system always evolves through transient states never reaching equilibration with the bath
is the origin of a peculiar behaviour different from that of systems whose propagating modes
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relax rapidly with the system ending up in a quiescent state. The dynamics is non-Markovian
and the correlation functions exhibit ageing effects.

We have formulated a generalization of Onsager’s theory to non-equilibrium ageing states
to derive a Fokker–Planck equation which captures the main characteristics of the dynamics
such as non-stationarity through the two-time probability density, non-Markovianity through
the time dependence of the transport coefficients and lack of thermal equilibration between the
system and bath. This equation is the main result of our analysis from which the behaviour of
the correlation functions follows.

We have applied the theory to study the relaxation in supercooled colloidal liquids for
which violation of the Stokes–Einstein relation at low frequencies has recently been found
experimentally. The relation between the diffusion coefficient and viscosity that we have
obtained explains those experiments. The key ingredients in this interpretation are the existence
of a quasi-equilibrium state with a temperature different from that of the bath which is
proportional to the velocity moments and the fact that the viscosity depends on the penetration
length of the diffusion modes resulting from the underlying activated process taking place at
sufficiently long times.

The formalism proposed thus offers an interesting theoretical framework for the study of
glassy behaviour in colloidal liquids.
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